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We predict the conditions of superparaelectric phase appearance in the ensemble of noninteracting spherical
ferroelectric nanoparticles. The superparaelectricity in the ensemble of nanoparticles was defined by analogy
with superparamagnetism, obtained earlier in small nanoparticles made of magnetic material. Calculations of
correlation radius, energetic barriers of polarization reorientation, and polarization response to external electric
field, performed within Landau-Ginzburg phenomenological approach for perovskites Pb�Zr,Ti�O3, BiFeO3,
uniaxial ferroelectrics Rochelle salt, and triglycine sulfate, proved that under the favorable conditions ensemble
of noninteracting nanoparticles possesses superparaelectric features. The main favorable conditions for the
superparaelectricity observation in ferroelectric nanoparticles are the radius smaller than the correlation radius,
surface screening of depolarization field, small Curie-Weiss constant, and high nonlinear coefficients, which
guarantee that the barrier of the particle polarization orientation will be smaller than the thermal energy and the
particle is single domain. The theoretical forecast is waiting for experimental revealing.
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I. INTRODUCTION

Ferroelectric, ferromagnetic, and ferroelastic materials be-
long to primary ferroics,1 so that one can expect the similar-
ity of their properties not only in bulk samples, but in nano-
materials also. One of the most interesting and broadly
investigated phenomenon in ensemble of ferromagnetic non-
interacting nanoparticles was shown to be superparamagnetic
phase �see, e.g., Refs. 2 and 3 and references therein�. This
phenomenon is related to the fact that for nanoparticle with
radius smaller than magnetic exchange length a barrier be-
tween different orientations of magnetization is of the order
of kBT at temperatures T�100 K because it is proportional
to the nanoparticle volume. As a result, the particle can be
considered as a free reorientable one up to some low enough
blocking temperature Tb, smaller than the barrier height. At
T�Tb magnetic hysteresis loop appears, which is character-
istic for monodomain ferromagnetic. Magnetization of the
noninteracting nanoparticles in magnetic field has no quanti-
zation contrary to paramagnetic molecules. It can be de-
scribed similarly to classic paramagnetics by Langevin func-
tion where the moment of whole particle and not the moment
of separate ions has to be considered as elementary magnetic
moment.4 As a result the relaxation time of thermoactivated
magnetization is much larger than for conventional paramag-
netics.

One could expect the appearance of similar phase in the
other primary ferroics, in particular in the ensemble of ferro-
electric nanoparticles. Despite the technology progress in
production of these systems, for instance, using porous
matrices,5–7 up to now nothing is known about super-
paraelectric phase in ensembles of ferroelectric nanopar-
ticles; also the term “superparaelectric” was used for the de-
scription of bulk ferroelectric relaxors.8–10 There were
attempts to apply the term to ferroelectric film11 and to the
ferroelectric nanoparticles.12,13 However the observed prop-
erties were characteristic mainly to paraelectric phase rather
than to superparaelectric one.

In this paper we considered the conditions at which
superparaelectric phase would exist in ferroelectric nano-

particles. In our approach we define superparaelectrics’ char-
acteristic features by analogy with those of superparamagnet-
ics. First of all we took into account that while in magnetic
nanoparticles exchange interaction tries to align magnetic
moments of ions the correlation effect plays the same role in
ferroelectric nanoparticles. Actually, polarization fluctuation
correlations are determined by the correlation radius,14 origi-
nated from the long-range interactions. Therefore in the
nanopartcile with radius smaller than correlation radius all
the electric dipoles have to be aligned in the same direction.
So we arrive to the pattern of nanoparticles with large
enough electric dipoles. The behavior of the ensemble of
such noninteracting nanoparticles under the external electric
field, temperature, and other factors has to define the size-
dependent characteristic features of superparaelectric phase.
Below we listed these features for the case of spherical ferro-
electric nanoparticles.

�1� When the particle radius R is less than the correlation
radius Rc, but higher than the critical radius Rcr of size-driven
ferroelectric-paraelectric phase transition, all dipole moments
inside the particle are aligned due to the correlation effects.

�2� Surface screening of depolarization field that makes
the particle single-domain state energetically preferable.

�3� Potential barrier �F�T ,R� of polarization reorientation
can be smaller than thermal activation energy at temperatures
T higher than the freezing temperature Tf�R� depending on
the particle radius R. Freezing temperature Tf�R� can be es-
timated from the condition �F�Tf ,R�=kBTf. Such determina-
tion is somehow voluntary, since the rigorous value of Tf�R�
depends on numerical factor � before kBT, which depends on
the system characteristics.

�4� Langevin-like law for polarization dependence on ex-
ternal field is obtained at temperatures higher than the freez-
ing temperature Tf�R�, but lower than the temperature Tcr�R�
of size-driven ferroelectric-paraelectric phase transition.

�5� Ferroelectric hysteresis loop and remnant polarization
appear at temperatures T lower than the freezing temperature
Tf�R�. This behavior can be named as frozen superparaelec-
tric phase.

PHYSICAL REVIEW B 78, 134107 �2008�

1098-0121/2008/78�13�/134107�9� ©2008 The American Physical Society134107-1

http://dx.doi.org/10.1103/PhysRevB.78.134107


The conditions �1�–�5� determine the superparaelectric
phase appearance in the ensemble of ferroelectric nanopar-
ticles of radius Rcr�R�Rc at temperatures Tf�R��T
�Tcr�R�.

In Sec. II we performed calculations of correlation radius
dependence on the particle radius, temperature, and ferro-
electric material parameters. Potential barrier of polarization
reorientation in ferroelectric nanoparticle is calculated in
Sec. III. Polarization dependence on electric field and hyster-
esis loop calculations allowing for barrier existence are pre-
sented in Sec. IV. Superparaelectricity appearance in ferro-
electric nanoparticles is discussed in Sec. V.

II. CORRELATION RADIUS DEPENDENCE
ON PARTICLE RADIUS

Let us introduce a correlation function of polarization
z-component P3�r� fluctuations in conventional way15

G�r,r�� = ��P3�r� − �P3�r����P3�r�� − �P3�r����� , �1�

where �. . .� stands for thermal �statistical� averaging. Using
the fluctuation-dissipation theorem,14,16 one can rewrite the
correlation function �1� via a generalized susceptibility
��r ,r�� in the form G�r ,r��=kBT��r ,r��, where ��r ,r�� de-
termines the increment of polarization �P3�r� under the in-
homogeneous electric field �E3�r��:

�P3�r� =� ��r,r���E3�r��dr�. �2�

In order to find the generalized susceptibility ��r ,r��
�G�r ,r�� of confined system, one has to consider the equa-
tion of state for z component of the polarization P3�r�
= P�r�+�P3�r�:

a1P3 + a11P3
3 − �

�2P3

�z2 − �	 �2P3

�x2 +
�2P3

�y2 

= E0 + Ed�P3� + �E3. �3�

Gradient terms are ��0 and ��0; expansion coefficient is
a11�0 for the second order phase transitions. Coefficient
a1�T�=	T�T−Tc� and Tc is the transition temperature of bulk
material. Note, that the coefficient a11 for displacement type
ferroelectrics does not depend on T, while it is temperature
dependent for order-disorder type ferroelectrics �see math-
ematical details in Appendix A of Ref. 17.

E0 is the homogeneous external field, the term Ed�P3�
represents depolarization field, that increases due to the po-
larization inhomogeneity in confined system. Linear operator
Ed�P3� essentially depends on the system shape and bound-
ary conditions at Ed�0��0. For the most of the cases it has
only integral representations, which reduces to constant �de-
polarization factors� only for special case of ellipsoidal bod-
ies with homogeneous polarization distribution. In this case
of polarization dependence on the x and y coordinates simple
expression for electric depolarization field, obtained by
Kretschmer and Binder,18 is not valid. Below we consider the
case when depolarization field is completely screened by the
ambient free charges 
 outside the dielectric particle �short

circuit electrical boundary conditions�, while it is nonzero,
but small enough inside the dielectric particle due to inho-
mogeneous polarization distribution �i.e., nonzero div P�0�
�see Fig. 1�b��. Corresponding expression for the spherical
particle depolarization field is derived in Appendix B of Ref.
17.

Note that open circuit electrical boundary conditions for
single ferroelectric nanoparticles of different shapes were
considered by Naumov and co-workers19–21 and Slutsker et
al.22 The various types of domain structures were found, in-
cluding vortices.19 However when the boundary conditions
tend to short circuit, the nanoparticle becomes single
domain.20 Since only individual nanoparticles were consid-
ered in Refs. 19–22 the depolarization field outside the par-
ticles was ignored despite partial screening should lead to its
appearance. Given that the depolarization field is responsible
for electrostatic interaction between nanoparticles in the en-
semble, the partial screening may lead to the formation of
superstructures inside ensemble. Since we aim to consider
the conditions of superparaelectric phase appearance, we re-
stricted our model to the case of weak deviation from perfect
screening case, when the field outside the particles is small
and interaction between nanoparticles could be neglected.

The boundary conditions depend on the geometry and sur-
face energy of the system depending on the extrapolation
length �.28 For the spherical particle of radius R the bound-
ary conditions are

�	�
dP3

dr
+ P3
�

r=R
= 0, �4�

where r=
x2+y2+z2 is radius in spherical coordinates. The
typical values are ���=0.5–50 nm.23

Using equation of state �3�, one can write the linearized
equation for the fluctuation �P3 as

�a1 + 3a11P2�r���P3 + Ed��P3� − �
�2�P3

�z2

− �	 �2�P3

�x2 +
�2�P3

�y2 
 = �E3. �5a�

The equilibrium polarization P� P3
0 satisfies the nonlinear

equation

P3 -+

Screening charges σ

R

FIG. 1. �Color online� �a� Ensemble of noninteracting ferroelec-
tric nanoparticles covered outside by the ambient free charges 
.
All particle radii R are less than the correlation radius Rc, so that the
dipole moments inside the particle are aligned due to the correlation
effects. �b� A given nanoparticle, where the arrows inside the par-
ticle indicate the absolute value of dipole moments in different
points.
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a1P + a11P3 − �
�2P

�z2 − �	 �2P

�x2 +
�2P

�y2 
 = E0 + Ed�P� .

�5b�

Maxwell’s equations div�P�r�+�0�Ed�r�+E0��=0 and
rot Ed�r�=0 lead to the expression in Fourier k representa-

tion �Ẽd=−� �P̃�k�
�0

k Õ k � k
k .24 So, the relation between depolar-

ization field fluctuations Ẽd and polarization �P3�r� is

Ẽd = −
k3

2

�0k2�P̃3�k� . �6�

In Appendix B2 of Ref. 17 we had shown the validity of Eq.
�6� for nanoparticles.

Using the definition of generalized susceptibility �2� and
Eqs. �5� and �6�, we obtained the approximate solution for

linearized susceptibility �̃�k�� G̃�k� in Fourier k representa-
tion as

�̃�k� �
1

3a11P̄2 + aR�T,R� + ��k1
2 + k2

2� + �� + 1/�0k2�k3
2

.

�7�

Equation �7� works well for low k values �long-wave ap-

proximation�. P̄ is the equilibrium polarization averaged over
the nanoparticle volume which satisfies the equation

aR�T ,R�P̄+a11P̄3=E0. At zero external field E0=0, the spon-

taneous polarization is nonzero in ferroelectric phase, P̄2

=−aR�T ,R� /a11, while P̄=0 in paraelectric phase. Depolar-
ization field and surface influence lead to the renormalization
of coefficient a1 in Eq. �7� as25

aR�T,R� � 	T�T − Tc	1 −
Rcr

0

R

� , �8�

where Rcr
0 = 3
 / 	TTc��+

�0� is a critical radius of size-

induced paraelectric phase appearance at zero temperature
and R�Rcr. It exists at ��−

�0, and thus we consider the
case of the positive extrapolation length hereinafter. At a
given temperature T the sphere critical radius Rcr�T�
� Rcr

0 / 1−T /Tc exists at T�Tc and should be found from the
condition aR�T ,Rcr�=0. Both measured and calculated values
of Rcr typically depend on temperature T and varied within
the range 2–50 nm.26–28 At radii R�Rcr�T� the particles’
ferroelectric properties are close to the bulk material.

In plane, perpendicular to the polar axis �k3=0�, the ex-
pression �7� can be simplified to a Lorentzian form �̃�k�
��Rcx

2 �k1
2+k2

2�+1�−1, where the correlation radii for the fluc-
tuations across polar axis are introduced as

Rcx�T,R� = �

�

aR�T,R�
, aR�T,R� � 0


 − �

2aR�T,R�
, aR�T,R� � 0.� �9�

Since usually gradient coefficients 
��, while for ferro-
electrics a1�0�1, the longitudinal correlation radius Rcz
is almost constant and much smaller than Rcx. This means

that the depolarization field suppresses longitudinal
fluctuations.24

Transverse correlation radius Rcx dependence via the par-
ticle radius calculated on the basis of Eq. �9� is shown in Fig.
2. At temperatures T�Tc transverse correlation radius Rcx
diverges at critical radius Rcr�T� as anticipated from Eq. �9�
�see curves 1–3�. The divergence corresponds to the size-
induced ferroelectric-paraelectric phase transition. At tem-
peratures T�Tc transverse correlation radius monotonically
increases with the particle radius because of aR

−1�T ,R� in-
crease �see curves 4 and 5�.

III. POTENTIAL BARRIER FOR POLARIZATION
REORIENTATION IN FERROELECTRIC

NANOPARTICLES

In the vicinity of the phase-transition polarization reorien-
tation is caused by fluctuations. So, let us study the question
how high can the potential barrier of polarization reorienta-
tion in spherical ferroelectric nanoparticles under the absence
of external field be.

A. Barrier for perovskite and uniaxial ferroelectric
nanoparticles

For uniaxial ferroelectrics the barrier between the states
�P0 can be estimated on the basis of the free energy

F�P̄� = V	aR�T,R�
2

P̄2 +
a11

4
P̄4 − P̄E0
 . �10�

In Eq. �10� the integration over the spherical particle volume
V=4�R3 /3 was performed. At zero external electric field
�E0=0� the barrier �F=VaR

2�T ,R� /4a11.
For perovskite ferroelectrics the orientation barrier can be

estimated on the basis of the free energy
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FIG. 2. �Color online� Transverse correlation radius Rcx /Rcx
b �T

=0� dependence on particle radius R /Rcr
0 for different temperatures

below �T�Tc�, equal �T=Tc�, and above �T�Tc� the bulk transi-

tion temperature Tc; T /Tc=0, 0.6, 0.8, 1, and 2 �curves 1–5�. Bulk
correlation radius Rcx

b =
−� /2a1�T� is defined in ferroelectric phase
�T�Tc�.
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F�P̄� = V	aR�T,R�
2

�P̄1
2 + P̄2

2 + P̄3
2� +

a12

2
�P̄1

2P̄2
2 + P̄3

2P̄2
2

+ P̄3
2P̄1

2� +
a11�T,R�

4
�P̄1

4 + P̄2
4 + P̄3

4� − P̄1E01 − P̄2E02

− P̄3E03
 . �11�

Free energy �11� is stable only for a11�0 and a11+2a12�0,
otherwise one should consider higher order terms in Eq. �11�.
At zero external electric field, E0=0, free energy �11� can

describe paraelectric �PE� phase with P̄i=0 �thermodynami-

cally stable at aR�0�; rhombohedral ferroelectric �rFE�
phase with P̄1

2= P̄2
2= P̄3

2=−aR / �a11+2a12� �stable at aR�0
and a11�a12�; tetragonal ferroelectric �tFE� phase with P̄i

2

=−aR /a11, P̄j
2= P̄k

2=0, and i� j�k �stable at aR�0 and a11

�a12�. The saddle points P̄i
2= P̄j

2=−aR / �a11+a12� and P̄k
2=0,

bordering the minima exist in tFE. One can find the potential
barrier between different polarization orientations in stable
phases as a difference between the free-energy values corre-
sponding to minimum and saddle point. Thus, using Eqs.
�10� and �11�, we have found the reorientation barrier in the
form

�F�T,R� = ��T,R� · kBT ,

��T,R� = V
aR

2�R,T�
4kBT a11�

a12 − a11

a12 + a11
, 2a11 � a12, perovskite FE

a11

a11 + 2a12
	a11 − a12

a12 + a11

, 2a11 � a12, perovskite FE

1, uniaxial FE.
� �12�

Here the dimensionless barrier height � is introduced.
Note that Eq. �11� transforms into Eq. �10� at a11=a12

with accuracy of multiplayer 3. In this “isotropic” case the
barrier and the circle of minima looks like “sombrero.”

Examples of the phase diagrams in coordinate tempera-
ture sizes are shown in Fig. 3 for perovskite �Figs. 3�a� and
3�b�� and uniaxial �Figs. 3�c� and 3�d�� ferroelectric nanopar-
ticles. Solid curves correspond to the transition between
paraelectric and ferroelectric phases, i.e., it is the dependence
Tcr�R� and so �F�Tcr ,R�=0. Dashed curves represent the
situation when the reorientation barrier is equal to the energy
of thermal fluctuations �F=kBT; dotted curves correspond to
barriers �F=2kBT �Figs. 3�a� and 3�b�� and 50kBT �Figs. 3�c�
and 3�d��. Filled area between corresponding solid and
dashed curves indicates the regions with potential barrier �F
lower than the thermal activation energy.

Freezing temperature Tf�R0� at a given particle radius R0
can be estimated as an intersection of the vertical line R
=R0 with corresponding dashed �or dotted� curves as shown
in Fig. 3�a�. So at a given particle radius R0 free reorienta-
tion of polarization is expected in the temperature range
Tf�R0��T�Tcr�R0�. Similarly, at fixed temperature T0 the
“freezing” nanoparticle radius Rf�T0� can be estimated an
intersection of the horizontal line T=T0 with corresponding
dashed �or dotted� curves shown in Fig. 3�a�. Surely the
range determination is somehow voluntary, since the value of
Tf�R� or Rf�T� depends on numerical factor � before kBT that
in turn depends on the system characteristics.

Dashed curves represent the situation when the reorienta-
tion barrier is equal to the energy of thermal fluctuations,
�F=kBT; dotted curves correspond to barriers �F=2kBT
�Figs. 3�a� and 3�b�� and 50kBT �Figs. 3�c� and 3�d��. Groups
of curves 1, 2, and 3 correspond to critical radius at zero

temperature Rcr
0 =0.4, 1, and 3 nm. Coefficients for BiFeO3

were taken from Ref. 29, namely, a1=9.8�T−1103��105

�C−2m2N� with temperature in kelvin, a11=13�108

�C−4m6N�, and a12=2�108 �C−4m6N�. Coefficients for
PbZrxTi1−xO3 can be found in Ref. 30. Free-energy expan-
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FIG. 3. �Color online� Phase diagram in coordinate temperature
size for four different sets of material parameters corresponding to
PbZr0.6Ti0.4O3 �PZT�, BiFeO3 �BFO�, Rochelle salt �RS�, and trig-
lycine sulfate �TGS� �panels a, b, c, and d, respectively�. Solid
curves are related to the transition between paraelectric and ferro-
electric �FE� phases, i.e., it is Tcr�R�, where �F=0.
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sion coefficients for RS and TGS were calculated from data
given in Ref. 31.

So at fixed radius R, superparaelectric �SPE� phase may
appear only in the temperature range Tf�R��T�Tcr�R�. At
fixed temperature �e.g., at room� SPE may appear only at
nanoparticle radii Rcr�T��R�Rf�T�. However, as was stated
in Sec. I, the condition of all ions inside the particle align-
ment is necessary for SPE appearance �see Fig. 1�b��. As we
have discussed in Sec. I to superparamagnetic nanoparticles,
the alignment due to the correlation effects is possible when
the particle radius R is less than the correlation radius Rc. On
the other hand the particle radius must be higher than the
critical radius Rcr of size-driven ferroelectric-paraelectric
phase transition. Therefore we have to find out the region of
radii where the conditions can be fulfilled.

B. Correlation effect in ferroelectric nanoparticles

The dependence of ratio Rcx�T ,R� /R on particle radius R
for the temperatures T corresponding to orientation barrier
�F�T ,R�=kBT �solid curves� and �F�T ,R�=10kBT �dotted
curves� are shown in Figs. 4�a� and 4�b� for PZT and TGS,
respectively. In the range ��Rcx�T ,R� /R�1 the alignment
of elementary dipoles appears due to the correlation effects
as well as adopted here long-wave approximation is valid
and self-consistent. So, the filled area between solid curves
��F�T ,R�=kBT�, dashed vertical lines of size-induced FE-PE
phase transition �R=Rcr

0 and �F=0�, and horizontal line

�Rcx=R� indicates the region of particle radii corresponding
to the possible superparaelectric phase appearance.

It is seen from Fig. 4 that the region of SPE phase can be
large enough, its width being essentially dependent on exis-
tence of low barrier, and the region is broader for TGS than
for PZT.

In agreement with Eq. �12�, energetic barrier height

�F�R��R3	T
2 /a11�V Rcx

−2P̄0
2. So to obtain low barriers in

the wider vicinity of PE-FE size-induced phase transition,

high Rcx, low P̄0
2 values, and small enough particle radii are

necessary. The favorable conditions for small �F and high
Rcx values are small Curie-Weiss constants and high coeffi-
cients a11.

To summarize, the condition 0��F�T ,R��kBT deter-
mines the superparaelectric phase appearance in ferroelectric
nanoparticles of radius Rcr�T��R�Rf�T��Rc�T� at given
temperature T or alternatively at temperatures Tf�R��T
�Tcr�R� at given radius R. In the region of relatively low
potential barrier of polarization reorientation under external
electric field could partially or fully align the nanoparticle
dipoles as considered below.

We have to underline that, namely, aforementioned
temperature-size region corresponds to the true SPE phase.
In this region polarization of free orientable dipoles has to be
independent on the regime of external electric-field applica-
tion �field cooling, zero-field cooling, etc.� so here the behav-
ior of SPE is ergodic. In what follows we will consider the
influence of external electric field on polarization for two
cases, namely, for kBT larger and smaller than the barrier for
dipole reorientation. In the latter case the hysteresis loop can
appear at T�Tf�R� that is known to be characteristic feature
of ferroelectric phase. One can also expect the transforma-
tion of behavior into nonergodic one with dependence of
polarization response on the regime of field application like
it was observed for superparamagnetic phase.32 On the other
hand the behavior in the region T�Tb is considered as
“blocked superparamagnetism” in Ref. 4. In any case it is
obvious that the region T�Tf has to be included into con-
sideration of superparaelectrics.

IV. POLARIZATION RESPONSE TO EXTERNAL FIELD

At a given temperature T and nanoparticle radius R,
polarization orientation with respect to external field
E0= �0,0 ,E0� can be written as P= �P sin � cos � ,
P sin � sin � , P cos ��. After elementary transformations the
free energies �10� and �11� acquire the form

F�P̄,�,�� = V��
aR�T,R�

2
P̄2 +

a11

4
P̄4 − E0P̄ cos �+

�a12 − a11�
2

P̄4�sin4 � sin2 � cos2 � + sin2 � cos2 ��+� perovskite FE

	aR�T,R�
2

P̄2 +
a11

4
P̄4 − E0P̄ cos �
 , uniaxial FE

� . �13�
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FIG. 4. �Color online� �a� and �b� The dependence of ratio
Rcx�T ,R� /R on particle radius R for orientation barrier kBT �solid
curves� and 10kBT �dotted curves� and different values of critical
radius Rcr

0 =0.4, 1, and 3 nm �curves 1–3�. Vertical lines indicate the
FE-PE phase transition appearing at critical radius Rcr

0 ; Rcx
b �T=0�

=1 nm �other material parameters are the same as in Fig. 3�. Filled
area reflects the region of superparaelectric phase existence.
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Here �� ,�� are the spherical angles. Similarly to the consid-
eration of superparamagnetics proposed by Binder and
Young,3 in order to obtain equilibrium polarization vector
�P�E0��= �P1 , P2 , P3�, polarization components Pi�E0 ,� ,��
should be averaged over the spherical angles �� ,�� and po-

larization absolute value P̄ distribution

�P̄i�E0��

= �
0

�

dP̄ ��P̄�exp�−
F0�P̄�
kBT

�
�

�
0

2�

d��
0

�

d� sin � exp�− Fa�P̄,�,��/kBT� P̄i�E0,�,��

�
0

2�

d��
0

�

d� sin � exp�− Fa�P̄,�,��/kBT�
.

�14�

Here ��P̄� is the distribution function of P̄, originated from
the dispersion of nanoparticle sizes R, schematically shown
in Fig. 1�a�.

F0�P̄�=V�R��
aR�R,T�

2 P̄2+
a11

4 P̄4� is the isotropic part �i.e.,
angles independent� of the free energy �13� that coincides

with Eq. �10� at E0=0; Fa�P̄ ,� ,�� is the angle-dependent
part. Note that due to the conservation of magnetization vec-
tor absolute value, the isotropic part F0 does not play any
important role in superparamagnetics consideration �parapro-
cess is typically small�.1,2 However, in ferroelectrics polar-
ization absolute value strongly depends on the boundary con-
ditions and applied electric field so F0 is essential.

The averaging over the spherical angles in Eq. �14� leads
to the dependences �P1�E0��= �P2�E0��=0. Note that equilib-
rium �or absolutely stable� remnant polarization is always
absent, i.e., �P3�E0=0��=0. Actually, the free energy �13� is

the even function of cos � at E0=0, while P3= P̄ cos � is an
odd function of cos �, and so at zero applied field only the

trivial solution �P3�E0=0��= P̄�cos ���0 exists. The math-
ematical result reflects the conventional statement that equi-
librium polarization of perfect ferroelectrics can be reversed
by infinitely small field applied long enough.31,33 In other
words, hysteresis phenomenon appearance at T�Tf�R� �or
nanoparticle radiuses R�Rf�T�� has to correspond to the
metastable (nonergodic) state. In order to include bistable
states �e.g., hysteresis� averaged values �Pi� should be sub-
stituted either into Eq. �14� or in the free energy �13�
self-consistently.15

In what follows we will consider separately the nanopar-
ticles of the uniaxial and perovskite ferroelectrics allowing
for the different forms of their free energy and barriers.

A. Uniaxial ferroelectrics

For uniaxial ferroelectrics, analytical integration on the
spherical angles �� ,�� can be performed in Eq. �14�. This
leads to the expression

�P̄3�E0�� = �
0

�

dP̄ ��P̄�P̄ exp	−
F0�P̄�
kBT


 L	VE0P̄

kBT

 ,

L�x� =
1

tan h�x�
−

1

x
. �15�

Function L�x� is exactly Langevin function. Independent on
electric field and related to the barrier exponential term with
isotropic part of the free energy F0 is the additional factor in
comparison with superparamagnetics.

It is clear from Eq. �15� that the Langevin law can be
obtained for infinitely sharp Dirac-delta distribution function

��P�=��P− P̄� �i.e., all particles have equal radius� and low

energetic barriers �F0�P̄���kBT so exp�−F0 /kBT��1 �i.e.,
particle radius is much smaller than the freezing radius R
�Rf�T��, namely, for the case

�P̄3�E0�� � P̄ tan h−1	VE0P̄

kBT

 −

kBT

VE0
. �16�

Surely, in a given nanocomposite sample nanoparticle sizes
are distributed. For this case the averaging in Eq. �15� with
finite-width distribution function ��P� should be performed.
Obtained results essentially depend on distribution function
parameters, however in any case one can obtain Langevin-
like behavior for sharp enough distribution function ��P�
and low energetic barriers. Langevin-like behavior in super-
paramagnetic was obtained in Ref. 4; the phenomenon was
called isotropic supermagnetism.

At fixed temperature �e.g., at room� and nanoparticle ra-
dius essentially higher than the “freezing radius” R�Rf�T�,
orientation barrier is much higher than the thermal fluctua-
tions kBT. So, lets divide the integration on the particle radius
in Eq. �15� into two regions 0�R�Rf�T� and R�Rf�T�.
Region 0�R�Rf�T� �and so R�Rc since Rf �Rc� corre-
sponds to the behavior without hysteresis, since here the bar-

rier �F0�P̄���kBT and so exp�1. Region R�Rf�T� �and so

R�Rc�, where �F0�P̄���kBT, has to be ferroelectric phase
that could be considered self-consistently, namely, with the
substitution P4� P2�P3�2 in the free energy F0. Using these
ideas and Laplace method of integration, we obtained ap-
proximate analytical expressions

�P̄3�E0�� � �
0

Rf�T�

dR �̃�R�P̄�R�L	VE0P̄�R�
kBT



+ �

Rf�T�

� dR �̃�R� E0

aR�R,T� + a11�P̄3�E0��2
. �17�

Here �̃�R� is the normalized distribution function of nano-

particle radii R, related with ��P̄� in conventional way �see,

e.g., Ref. 34�, and P̄ satisfies the equation aR�T ,R�P̄

+a11P̄3=E0. Note, that Rcr�T��Rf�T��Rc�T� as stated in
Sec. III. Thus in the first integral R�Rc, while in the second
integral both regions R�Rc and R�Rc are included. Note,
that we did not consider the critical region R�Rcr�T�, where
the critical phenomena can be important.

Dependence of mean polarization �P3� on the applied
electric field is shown in Fig. 5�a� for uniaxial RS material
parameters, Dirac-delta distribution �̃�R�=��R−R0� of par-
ticle sizes, fixed freezing radius Rf�T� at room temperature
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T=0 °C, and different nanoparticle average radius R0.
Curves 1–4 for R0�Rf correspond to the Langevin law,
while curves 5–7 for R0�Rf indicate the hysteresis loop ap-
pearance.

Solid curves in Fig. 5�b� are Langevin law �P̄3�E0�� for
different nanoparticle radii R; dashed curve corresponds to
the rectangular distribution function �̃�R�=1 /Rf at 0�R
�Rf shown in the inset.

Dependence �P3�E0�� calculated from Eq. �17� for bell-
shaped distribution functions �̃�R� is shown in Fig. 5�c�
�curves 1–3�. Dotted curves correspond to Dirac-delta distri-
bution �̃�R�=��R−R0� for small R0�Rf and high R0�Rf.

It follows from Fig. 5 that for Langevin-like behavior
besides small enough nanoparticle radii and barrier �as it was
discussed earlier� the narrow distribution function of the par-
ticle radii and polarization is necessary, the particular form of
distribution function being not especially important. It is ob-
vious also that hysteresis loop originates from contribution
of either large enough average particles radii �see Fig. 5�a��
or broad distribution function �see Figs. 5�c� and 5�d��. The
important role of large particles in appearance of hysteresis
loop is similar to what obtained in superparamagnetism

earlier.4 Allowing for this behavior at T�Tb to be named as
blocked superparamagnetism, it seems reasonable to name
the region T�Tf with hysteresis loop as frozen super-
paraelectricity.

B. Perovskite ferroelectrics

For perovskite ferroelectrics with a11�a12, the averaging
on the angle � in Eq. �14� leads to the expression

�P̄3�E0�� = �
0

�

dP̄ ��P̄�exp	−
F0�P̄�
kBT




�P̄

�
0

�

d� sin � cos � K�P̄,��

�
0

�

d� sin � K�P̄,��
,

K�P̄,�� = 2� exp	−
�Fa�P̄,��

kBT

I0	V

�a12 − a11�P̄4

16kBT
sin4 �
 ,

�Fa�P̄,�� = V	a12 − a11

2
P̄4 sin2 � cos2 �

+
�a12 − a11�P̄4

16
sin4 � − E0P̄ cos �
 . �18�

I0 is the modified Bessel function of zero order.
Similarly to the case of uniaxial ferroelectrics, let us di-

vide the averaging on the particle radius in Eq. �18� into two
regions 0�R�Rf�T� and R�Rf�T�. In the region 0�R

�Rf�T�, the barrier is �F0�P̄���kBT, and so exp�1. The

ferroelectric region R�Rf�T�, where �F0�P̄���kBT, was con-
sidered self-consistently. Similarly to Eq. �17�, we obtained
approximate analytical expressions

�P̄3�E0�� � �
0

Rf�T�

dR �̃�R�P̄

�
0

�

d� sin � cos � K�P̄,��

�
0

�

d� sin � K�P̄,��

+ �
Rf�T�

� dR �̃�R� E0

aR�R,T� + a11�P̄3�E0��2
. �19�

Here �̃�R� is the normalized distribution function of nano-

particle radii R and P̄ satisfies the equation aR�T ,R�P̄

+a11P̄3=E0.
Dependence of mean polarization �P3� on the applied

electric field is shown in Fig. 6�a� for perovskite PZT mate-
rial parameters, Dirac-delta distribution �̃�R�=��R−R0�,
fixed temperature T�Tc, freezing radius Rf�T�, and different
nanoparticle radius R0. Curves 1–4 for R0�Rf correspond to
the Langevin-like law, while the curves 5–7 for R0�Rf in-
dicate the hysteresis loop appearance. Solid curves in Fig.
6�b� are Langevin-like law �P3�E0�� for different nanopar-
ticle radius R; dashed curve corresponds to the rectangular

0 20 40 60 80 100
0

1

2

3

4

5

6

7

42

1

3

-10 -5 0 5 10

-4

-2

0

2

4 7

56

1

4
3

2

Applied field E0 (kV/cm)

Po
la
riz
at
io
n

< P
3>
(m
C/
m
2 )

(a) RS

Applied field E0 (kV/cm)

(b)

Po
la
riz
at
io
n

< P
3>
(m
C/
m
2 )

R

μ(R)

Rf0

-10 -5 0 5 10

-4

-2

0

2

4

13

2

R0=2Rf

R0=0.5Rf

Applied field E0 (kV/cm)

Po
la
riz
at
io
n

< P
3>
(m
C
/m

2 ) (c) RS

0 1 2 3 4 5

1
2

3

R/Rf

μ(R)

(d)

FIG. 5. �Color online� �a� Dependence of Rochelle salt polariza-
tion �P3�E0�� on the applied electric field E0 calculated from Eq.
�17� for Dirac-delta distribution �̃�R�=��R−R0� and different val-
ues R0=6, 7, 8, 9, 11, 20, and 30 nm �Figs. 1–7 near curves�. The
freezing radius Rf =10 nm at temperature T=273 K, Rcr

0 =0.5 nm.
�b� Dependence �P3�E0��: solid curves 1–3 are Langevin law �16�
for different nanoparticle radii R=3, 5, and 7 nm; dashed curve 4
corresponds to Eq. �17� with rectangular distribution function,
�̃�R�=1 /Rf at 0�R�Rf, shown in the inset. �c� Dependence
�P3�E0�� calculated from Eq. �17� for well-localized distribution
functions �̃�R� �curves 1–3� shown in inset �d�. Dotted curves cor-
respond to Dirac-delta distribution �̃�R�=��R−R0� for R0=0.5Rf

and R0=2Rf �labels near the curves�. Other material parameters are
the same as in Fig. 3�c�.
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distribution function �̃�R� shown in the inset. Dependence
�P3�E0�� calculated from Eq. �19� for well-localized distribu-
tion functions �̃�R� is shown in Fig. 5�c� �curves 1–3�.

It follows from Fig. 6 that qualitatively the curves look
like those depicted in Fig. 5 for uniaxial case. Namely, the
narrower the distribution function of sizes the better is the
condition of Langevin type behavior observation.

One can see from Fig. 6�b� that pure Langevin curves are
higher than solid curves for different radii. Similarly to su-
perparamagnetics case,4 this behavior could be named as an-
isotropic superparaelectricity because of barrier anisotropy
�a11−a12� contribution in perovskites �see Eq. �18��.

To summarize the Sec. IV, Langevin-like law for polariza-
tion dependence on external field was predicted in the tem-
perature range Tcr�R��T�Tf�R� at fixed radius R�Rf �or in
the range Rcr�T��R�Rf�T� at fixed temperature T�. Bistable
remnant polarization appeared at temperatures T�Tf�R� �or
at radii R�Rf�T��. For nanoparticle radius less than critical
both hysteresis and its precursor, Langevin-like behavior, are
smeared.

V. SUPERPARAELECTRICITY AND THE CONDITIONS
OF ITS EXPERIMENTAL OBSERVATION

The overlap of filled regions from Fig. 3 �Tf�R��T
�Tcr�R�� and corresponding radii range �Rcr�R�Rc� from
Fig. 4 gives SPE phase region as shown in Fig. 7 for PZT
�Fig. 7�a�� and TGS �Fig. 7�b��.

At low temperatures T→0 �and so Rcr�T�→Rcr
0 �, approxi-

mate expression for the freezing temperature Tf could be
obtained from the condition ��Tf ,R→Rcr

0 �=1 �see Eq. �12��,
namely, we obtained the parabolic law

Tf�R → Rcr
0 � �

�Rcr
0 C0

3kBa11
�	TTc�R − Rcr

0 ��2. �20�

Constant C0 depends on coefficients a11 and a12 only, as
given by Eq. �12� for �.

To summarize, let us formulate the conditions of super-
paraelectric phase appearance in the ensemble of noninter-
acting ferroelectric particles of spherical shape and their
property peculiarities, which can be considered as character-
istic features of SPE phase.

�1� The superparaelectric phase can appear in ferroelectric
nanoparticles of average radius Rcr�R�Rc at temperatures
Tf�R��T�Tcr�R�. In this region:

�a� All nanoparticle dipole moments are aligned due to the
correlation effects.

�b� Potential barrier of polarization reorientation is
smaller than the thermal activation energy �kBT.

�c� Langevin-like law for polarization dependence on ex-
ternal field is valid at temperatures higher than the freezing
temperature Tf�R�, but lower than the temperature Tcr�R� of
size-driven ferroelectric-paraelectric phase transition.

�d� Hysteresis loop and remnant polarization �frozen SPE�
appear at temperatures T�Tf�R�.

�e� The observation time of the experiment t should be
larger than characteristic time � of particle reorientation in
external field. The time � is given by the Arrhenius law, �
=�0 exp��F /kBT�, where the barrier height �F is propor-
tional to the particle volume V in accordance with Eq. �12�
and the phonon time �0�10−12 s, so that the characteristic
time � has to be small enough for the small particles and
condition t�� has to be fulfilled.

�2� The favorable conditions for the superparaelectricity
observation in small ferroelectric nanoparticles at room tem-
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FIG. 6. �Color online� �a� Dependence of PbZr0.6Ti0.4O3 �PZT�
polarization �P3�E0�� on the applied electric field E0 calculated
from Eq. �19� for Dirac-delta distribution �̃�R�=��R−R0� and dif-
ferent values R0=0.5, 1, 1.5, 2, 3, 5, and 10 nm �Figs. 1–7 near
curves�. The freezing radius Rf =2.5 nm at room temperature T
=293 K, Rcr

0 =0.5 nm. �b� Dependence �P3�E0��: curves 1–3 are
Langevin law �dotted curves� and Langevin-like law �solid curves�
calculated from Eq. �19� for different nanoparticle radius R=1, 1.2,
and 1.6 nm; dashed curve 4 corresponds to the rectangular distribu-
tion function, �̃�R�=1 /Rf at 0�R�Rf, shown in the inset. �c� De-
pendence �P3�E0�� calculated from Eq. �19� for well-localized dis-
tribution functions �̃�R� �curves 1–3� shown in inset �d�. Dotted
curves correspond to Dirac-delta distribution �̃�R�=��R−R0� for
R0=0.2Rf and R0=4Rf �labels near the curves�. Other material pa-
rameters are the same as in Fig. 3�a�.
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peratures are small Curie-Weiss constant, high nonlinear co-
efficients a11, and narrow distribution function of particle
radii. The ensemble of noninteracting ferroelectric nanopar-
ticles could be realized in nanoporous nonferroelectric ma-
trix with the porous filled at least partly by some ferroelectric
material. Another type of composite material with cylindrical

geometry of nanoporous in the nonferroelectric matrix filled
with ferroelectric nanorods cannot be excluded also. How-
ever some differences in polar behaviors for this geometry in
comparison with spherical case can be expected.

The theoretical forecast is waiting for experimental re-
vealing.
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